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Attentional Neurocomputing
Steve Speidel

Naval Comimand Control and Ocean Surveillance Center
Rescarch, Development, Test and Evaluation Division
San Diego, CA, USA 92152-5000

ABSTRACT

Qur ultimate goal is 1o develop neural-like cognitive sensory processing within non-ncuronal systeme.
Toward this end, computational models are being developed for selectively attending the task-relevant pures
of compusite sensory evcitations in an example sound processing application. Significant stimuli partids
are selectively attended through the use of generalized neural adaptive beamformers. Computational
components are being tested by experiment in the laboratory and also by use of recordings from senscs
deployments in the ocean. Results will be presented. These computational components are being
integrated into a comprehensive processing architecture that simultaneously attends memory according 1o
stimuli, attends stimuli according to memory, and attends stimuli and memory according to an 6ngoing
thought process. The proposed neural architecture is potentially very fast when implemented in special
hardware.

1. INTRODUCTION

Much of the processing that happens in the brain is concerned with stages of perceptual organization for
the sensory systems. These include selection processes that support the brain’s ability to perceptually
separate and attend partials of sensory excitations (that may poessess a high degree of relevancy to a task)
from within a composite response’. In an effort to formutate applicable models for sensory field responsive
attentional mechanisms, augmented Kohonen and Hopfield type organization and optimization processes
have been embraced to support adaptive beamforming constructs®* . Following the popular metaphor, these
products are called "neural® adaptive beamformers (NABFs). It is suggested that these are generalizable to
function as fundamental building blocks in models of sensory processing, serving as instantiations of a
general adaptive beamforming (ABF) paradigm that is useful for understanding and producing
computational correlates of cognitive sensory systems. The beamforming paradigm easily integrates the
qualities of attentiveness and binding when it is applied to primitive partials of sensory excitations. [t
emphasizes a neural coding that is based upon comparison of temporal patterns arriving on spatially
separate channels. For example, beamformers participate in the transformation of temporal codes to
spatial codes, i.e., they produce the effect that temporal patterns that arrive on separate channels are
capable of activating specific loct in a neuronal layer based on their relative activity.

Ultimately, the fundamental paradigms of the applied models must support a minimal set of functions
which compose a comprehensive computational system capable of autonomously generating percepts. The
literature on phenomenological and physiological studies of sensory systems of the brain’suggests that a
desirable object orientation on the part of the brain is supported by continual interaction between
computations occurring within somewhat specialized though interdependent nuclei. This process often
includes the integration of different sensory modalities. However, even within a single modality there <
considerable interactive integration. It can be said that cognitive sensory function in general encompasses
the simultaneous acts of (1) attending inemory according to stimuli, (2) attending stimuli according to
scieoty, dad (3) attending stimuli and memory according to an ongoing "thought process.” Thus,
attentionat focussing is a key element of the cognitive sensory act. The thought process is a director of
efference or exemplar generation that expresses an object hypothesis during performance of a task or
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duning "vesualization” el during planning or antopaten . o 3 g erpeinat 0 ool attentionad o
OVEL SONSATY Processimng.

As an applicanion of the general concepts discussed heres a sound processor o berng developed that o
designed 10 be, mmomany respects, 1 computational correlate of ammal auditay aostems This work
particularly germane to sonar system development and voice command sysiems 1Eas also refesant to sier o
processing and communications in the electromagnetic donuuin through apphication of s underlving
principles. Similarly, analogous effects are found in phenomenological studies of the human visual dod
auditory systems, suggesting that there are pervading computational paradigms at work across the sensors
modalities®.

2. MECHANISMS
2.1 Encoding

What contribution to the computational model will the proper encoding of the stimulus provide?
Biological systems make extensive use of encoding transformations. Considering the auditory system in thic
respect, one finds the immediate spatial expression of the spectral content of an excitation along the
basilar membrane. This mapping is encoded into the common language of sensory and cortical neurons ut
the hair cells. This common language, in combination with the capability of neurons to learn and
spontaneously generate bursting patterns gives rise to invariant feature representations, efference.
attentiveness, memory, a retained model of the world, and ultimately consciousness.

[n our model for cognitive auditory processing, the ability to form an impression of an object. i.e.. 10
recognize an object by some relatively invariant quality of the sound it makes, will be emphasized. In
order to achieve a frequency-shift-invariant recognition of a source of sound, thereby emphasizing timbre
over pitch for recognition purposes, the encoding such as is done by the basilar membrane and hair cells is
essential. The frequency content of each partial is represented by place in the tonotopic arrangement. For
computational purposes, the phase is encoded in the quadrature coding discussed under 2.2 Timing and
phasing. Thus it is only necessary that the temporal pattern of the propagating excitation represent the
amplitude of the partial as a function of time. As a NABF adaptively weights the incoming partials, it can
select a group of responses out of the tonotopic arrangement that exhibit the correct relative patterns of
amplitude versus time as being representative of a particular timbre or quality of the sound that is
recognizable independent of pitch. Thus the recognition of a musical instrument can be achieved
independent of what note is being played; the train whistle can be recognized independently, to a
significant degree, of the current Doppler effect (or by using the Doppler effect to advantage because the

frequency modulation itself will be a recognizable quality’).

This encoding seems to be achieved in the auditory system through the physiology of the hair cells, their
stereocilia and links. The rectified charge flow rate representation of amplitude is summated (integrated)
and the rate of cell potentiation is reflected in the rate of firing of the cell. The relationship between the
firing rate and the stimulus amplitude may have statistical properties dependent upon stimulus noise or
internal neural noise as in the stochastic resonance phenomenon®,

2.2 Timing and Phasing

The fundamental ability to manipulate timing is important in encoding and selection schemes. Within
neuronal tissue, ar inrate bhility to support prancgatinn speeds and latency periods over wide ranges oxist:
as part of the chemistry of the physical mechanisms. To enhance the modeling of the timing action of the
computational network, both in-phase and time-lagged or phase-shifted versions of the inputs are
presented. This gives the network the ability to operate in a quasi-analytic domain.
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{t1s thought that in the auditory processing of many botogical oresaaems an ol spatiad gy o
accomphished by inuroduction of propagation time Iag and neur-nal responee atenosy . 10 the teie -0
lag in the processing is reversed from that produced by the <patal arrungement of the sennors tor 1 oo

angle of incidence, then the excitations will be added in-phase resulting 1n 4 maximuwm apon-e Lo o
angle of incidence. Simple time lag 15 very effective in spatuad processing for broadband sipnats and
produces appropriate phasing across all frequency componants of g stimulus simultaneousiy - Al o she

stimulus is an aperiodic waveform then there is no response ambiguity versus angle. e there s onbs one
processing time lag that produces the maximum correlation.

Concerning spatial mapping, and as a matter of computing convenience. the question arises whether
under certain circumstances the timing quality of neural interaction may be modeled by phasing, 1 ¢ by i
quadrature hybrid technique for each frequency band or aud 'orv fibre. It seems that in the cave of the
auditory system in humans, the distance between the ears ts approximately half a wavelength in air for
1000 Hertz. Therefore, the maximum internal delay that would be necessary 1o compensate for piopagation
time differences would be less than half a period of the 1000 Hertz wave in air as long as spatial muppiny
1s restricted to fibers responding at frequencies below 1000 Hertz. Thus, in the computational model at
least, the analytic computation of phase can be used to represent iming for a subset of the audnory fibre
Another question that arises is: does biological tissue use analvtic encoding?

To control phase by computing in the analytic domain, quadrature shifted excitations are inciuded in the
input suite on separate channels. To compute the quadrature shifted version of a finite bandwidth

excitation, the Hilbert transform, x(f), of an excitation, X(t), may be approximated numerically as an FIR
Hilbert transformer filter with frequency response

HQy={  0<fism i -,
‘ j, —'<Q<0

where §2 is the dimensionless frequency®. The appropriate set of weights is conceivably learnable by a
neuronal processing element. Furthermore, if the frequency partitions are narrow, the derivative, x(1).

divided by the center frequency of the band, ., is a good enough approximation to the quadrature input
in some cases, i.e.,

(0 = x(D)/w, = jE(w/w)clw,)e" = jx(1) (3

where the ¢(W) are the complex fourier coefficients for the series approximation.

In well-known treatises on adaptive processing it has been shown that the addition of a second lag (a
third tap) of the input can increase the adaptive beamformers ability to enhance the signal-to-noise ratio

of a broadband signal in noise and interference'®. The third tap is an inhibitory synapse relative to the
first tap, since it produces the negative of the first tap input at the center frequency of the band.

2.3 Hopfield-type Optimization for Selective Spatial Focussing

An optimization scheme has been developed that has the capability to adaptively adjust timing/phasing o
do spatial beamformine. An example architecture is illustrated in Fig. ' The Hopfield croc-bar cirzuit
arrangement ' is used as a computational kernel. The output voitages of the circuit are to represent the

weights on an adaptive combiner'’. In order to formulate the beamformer mechaniss: >0 that it responds
adaptively to inputs, the minimum mean square error problem is posed and the currents and connectivities
are solved for as functions of the inputs. The resulting expressions are
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connectivity T 1) = '"Irji Supdn. T,oE0 ny

: N byt . 1 o it R . )
ion flow 1,(1) = ?L S FT-ndy - =T, L0 )dn (3]
where T is a response latency period, and v,({—1T) is the output amplitude at the end of thé*previous epoch

from the ith element. In the case of discrete time-step simulations, the expectation value is usually
evaluated bv summing .

The performance of the Crossbar Adaptive Beamformer (CABF) was validated against composite sounds
of a real sonar scene impinging upon a spatially complex array. The data were obtained from the Sonar
Thinned Random Array Program (STRAP). Fig. 2 depicts the spatial arrangement of 11 sonobuoys that
were dropped in the Atlantic ocean. A known source was active at a distance of approximately 10 miles.
It consisted of two frequencies, seven and eleven Hertz. Figs. 3 and 4 show spectral densities from various
channels. Notice the inconsistency across the channels.

The temporal recordings made at these buoys were played into the beamformer. Fig. 5 shows the
adapted sensitivity of the CABF as a function of time. The CABF is correctly attending the desired signal
at approximately 41 degrees. These results are very good when you consider that no spectral preprocessing
was performed, i.e., the desired signal was still mixed with the other interfering components at a level of
approximately -20dB with respect to some higher frequency components (Fig. 3). More tests are being
performed in scenarios wherein interfering signals are arriving concurrently with the signal of interest and
from a variety of directions (see Mutual Inhibition below).

2.4 Adaptive Temporal Sifting

It has been demonstrated by many studies and by our own expcricnce listening to monaural radio scts
that the human auditory system need not have spatial cues in order to sort out sounds that are
simultaneously incident on our ears. To give this sorting capability to a processor, a temporal sifting
procedure may be formulated using an augmented form of the Kohonen self -organization procedure”. The
modified learning rule allows temporary storage of multi-dimensional n-vectors' that represent the average
vectors of statistically meaningful groupings or classifications of the input vectors. The action of the
so-called Multi-vector Adaptive Beamformer (MABF) is pictorially represented in Fig. 6. Temporal sifting
and short-term memory formation is accomplished according to

W = Wi + o3k — Ca)Adie (6)
where W; is the "weight plane”, expressed as a bi-vector in this case, of the ith processing element (PE) of

- - . -_) . . .
a layer of PEs that receives a fan-out of the inputs, O is the learning rate,C xis the projection of the kth

; - . . A ..
input vector, Xz, onto W;, normalized to unit length, dy = X - Wf'd (the bar denotes normalization), and

the symbol A denotes the wedge product. For the case of temporal learning, the input vectors are formed
from a tapped delay line.

2.5 Quasi-recursive and Hebbian characteristics
The functional qualities of continuity, accommodation, and memory are supported by quasi-recursive
(QR) and Hebbian arrangements whereby the adaptive mechanisms receive feedback from the output of the

total adaptive process. Both types are depicted in the system building blocks in figs. 7 and 8. They are
distinguishable by the connections to the adaptive mechanism.
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Lhe QR mechanism provades behavior somes hat anaiovous ©o the thp tlop that s used an doasad e
state machines. In this case however there are an ontmaie samdber of possible states, dependent dpon the
exemplar that s being presented and the content of the stinulus Diekd. Thus, b a quasi-recursive NARI
(QR-NABF) finds what 1t s looking for in the sensory excitation, 11 locks on to i, forming a quite stabie
state that persists even if the desired excitation s temporanih anterfered with, Thus, the QR-NABF oy
a short-/medium-term memory and, what is more. comcadentaiby attends and vernities the occurrence of (i
desired excitation. An architecture for the implementation of QR-NABEFs 15 discussed below. The
equatens (1) and {3) apply with each occurrence of v, replaced by v, where the multiple outputs, v, e
each phase-centered on the ith sensor:

connectivity T,(t) = *% §’ vy dn, 1, =0 7

ion flow 1,() =1 [, vk +T-0dn - v (-] xv(n)dn (5

The Hebbian arrangement correlates the feedback from the output with the corresponding inputs to
determine the svnaptic modification. Equations (4) and (5) apply with changes to reflect the Hebb-like
learning rule:

connectivity T, (1) = ~%ji vmy,mdny, 7, =0 )

ion flow 1,(t) = + [} _ yiW)AM + 1 -ty - %v,-(r -0 xmyimdn (10

2.6 Mutual inhibition

In order to utilize resources efficiently and have the capability of perceptually separating mixtures of
stimuli the neural elements must interact in a way that forms an organizational network. A sensory
hierarchy is one such organization (as it turns out, the most easily implemented). Building blocks for a
hierarchical assembly are represented diagrammatically in Fig. 7 and Fig. 8. The "beam group"” symbols
each represent a set of beams that are derived by displacing the phase reference to particular sensors or
channels. Thus, a beam group has an output channel for each input channel. The outputs of each module
goes to the inputs of a similar module, and so on. In this kind of arrangement, elements that are
responding to a particular stimulus inhibit other elements lower in the hierarchy from responding to it and
thereby free them to respond to other stimuli that may be concurrently active.

A neurobiological correlate to this action may be suggested by recent work regarding the
inferior-temporal (IT) cortex of the rhesus monkey'”. It was found that some cells in that region have a
reduced response over time to repeated stimuli while maintaining substantial response to new stimuli. It
could be hypothesized that other cells are selecting the repeated stimuli and inhibiting their propagation to
the cells in [T, thereby forming a novelty filter effect.

A hierarchical beamforming approach has been used for similar purposes. The inhibitory effect comes
about through the formation of notch beams that pass the excitation to lower levels in the hierarchv. First,
a quasi-recursive beamformer enhances its sensitivity to a particular excitation as described previouslv.
Next, a combination of inhibitory and excitatory connections to another element produces the notch beam,
i.e., it produces a minimization of response in the dimensional ranges where the initial elements response is
maximized.

In Figs. 9 and 10, parts a and b show the NABF receptivity as a function of the angle of incidence at
the first (highest) and second levels of the hierarchy, respectively. Two identical signals are incident at
approximately 35 and -30 degrees. In Fig. 9, the signal onsets are simuitancous and the NABF pair are
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contused  In bigs 10 and 1. one signal onset 15 delaved approxomatels HO milleconds teomy the a0 b
savh casel the recepunvity of the highest level NABE s focussed on one gngle of madence. whie i
receptivity of the second level beamformer is maximized at the other anple of inadence. Thus, the
confusion evident in Fig. 9 1s eliminated. Recursion is applied wn Fig. 11 but not a tws 9 cr i

2.7 Adaption of receptive field within internal representations

If neurons can adjust their receptive fields as the ABF paradigi, suggests (by adaptively weighting
synapses) then there may be atteational shifting within the internal physical representations generated by
sensory systems. A phenomenon that has been observed recently in visual processing in the parietal cortex
of monkeys' suggests that neurons have the ability to coordinate representational shifts with movements of
the eye. In the context of the auditory system, a related capability may account for pitch-independent
recognition of a musical instrument. Thus, in a cognitive sensory system model, the ABF paradigm will he
utilized to realize active recognition memory that can move the receptive fields of its elements along
internal representations. With regard to hearing, the action of the cochlear partition contributes to an
internal representation that preserves patterns of excitation due to the logarithmic best-frequency
dependence as a function of distance along the basilar membrane.

3. COGNITIVE SENSORY SYSTEM

The system architecture is very important, not only because it provides for the funnelling of outputs of
one process into the inputs of another, but also because the architecture supports multidimensional
encoding transformations, e.g., topological mappings that have important relationships to external space, or
that allow reduction of the dimensionality of information to be axonally propagated. In addition, the
somewhat specialized sub-processes of the system are interdependent and require robust interconnection.
Therefore, the neural computation approach is ideal and, along with the considerations reviewed in the
INTRODUCTION and MECHANISM sections, leads to a plausible processing scheme for selectively
attending partials of complex sensory excitations.

There is an issue of fundamental importance raised by a cortical beamforming/recognition approach with
regard to generation of exemplars used for attentionally directed segmentation; the issue is whether or not
an exemplar is generated in cortex and passed to some more peripheral part to the sensory system (perhaps
an intermediate stage) via efferents. This would facilitate the attentional function at early stages as has
been observed and it would also facilitate internally generated "visualization" about sensory experience, i.e.,
it would facilitate the ability to visualize some sensory happening. This would happen without an
immediate incoming sensory prompt and would be generated out of associations made during thought
causing the enlistment of sensor areas for visualization by the production of efference to intermediate
and/or peripheral sensory areas. In either case, the efference is produced by associations made in cortex ...
by association between memory and afferent sensory activity in one case and between memory and thought
in the other,

In the attentional effect produced by the beamformer, the efference serves as an exemplar. Thus. a
resonance can be achieved through interaction of sensory activation, associational memory, and thought
(symbolic processing as can be generated by expert systems) to achieve focussing on portions of the sensorv
activity remembered or thought (hypothesized) to be mission-relevant (or survival-relevant).

In experiments related to this issue, Metzner at Scripps Institute of Oceanography, University of
California, reported an efference within neural tissue whereby transmissions of the horseshoe bat are
compared with echoes in order to sense the Doppler and adjust its emission frequency accordingly. This is
in contrast to the idea that the bat listens to its own emission in order to generate the exemplar. This
brings up the question whether the cortical oscillations being reported in the literature are active generators
of "efference.”
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Furthermore., spantancous aloacoustic emssions have Heen measured in the human ear canad, uod the
madels considered by Zwicker and Pers] (1990) which try o explain thas include hteral coupling and

nonhinear active teedback analogous to those proposed for the neuroblonic beamformer 1t may be that the

teedback in the beamformer matrix s relevant to feedback observed at the cochlear fevel in the auditon
svstem.

A conveptual overview and some key elements of 2 comprehensive processing scheme are
depicted in tigures 12 and 13, respectivelyv, The conceptual overview 1s a simplified representation thay
includes tfour principal tuncoions: (1) the partitioning function, (2) the selection function, {(3) position and
motion determination, and (34) recognition. In reality, these functions are not performed separately. They
are provided by the interacting elements of the processing scheme.

The key elements ot the processing scheme are: (1) multiple band filtering, (2) binaural
correlation, (3) spatial adaptive beamforming, and (4) temporal adaptive beamforming. [a pracuice,
multiple-band filtering corresponding to the cochlear filtering indicated in figure 13 is performed using o
scaled-wavelet formulation, providing a spread of bandwidths associated with the various best-frequencics

It 1s recogmized that this model cannot account for the sharpness of the cochlear response function near the

best frequency™ Spatial mappings have been observed in the colliculus in some vertebrates”and
cortical field Al of the catr .

The processor contains a band-wise spatial mapping that receives excitations from the partitioned putput
of the cochlear process, i.e., the array of bandpass filters. The spatial mapping is supporied by the
confluence of afferent excitation from the sensors af intermediate computational nuclei (labelied SOC in
Fig. 13). An adaptive mechanisim supplies attentional focussing while the excitations are spatially mapped,
creating areas of enhanced activity. This function may be a correlate of the activity of the dorsal cochlear
nucleus (DCN). Intermediate between the cochlear processing and the band-wise spatial mapping is an
adaptive spatial process (not depicted) pravided by the NABF. The darkened areas represent those

attended (emphasized) by the NABI'. Thus the spatial layer acts as a sieve, passing attended stimulus
partials,

The spatial mappings can be related to the beamformer sensitivity maps of figures 9 through 11 where a
single row of the spatial map as a function of time is plotted contiguously down the page. These maps
may be thought to represent the activity of a layer of beamformers with relatively fixed directional
preferences. What is the purpose of forming a topological organization of the beamformers? The
topological mapping creates an organization by which the cells for the various auditory bands which
respond to a given object in space are close together. This simplifies the projection of the output of the
spatial neurons to the cortical area where recognition is accompliished. This organization is also beneficial

in the digital signal processing application, though the units are not actually arranged spatially but are
arranged by ordinal number instead.

Notice that a loop has been formed, because the output of the spatial map projects as input 10 the
recognition area, the output of which was utilized in the formation of the spatial map. In the biological
case, it is not clear whether this system constantly feeds back on itself or if there is an afferent wave of
activity followed by an efferent wave or vice versa. In the case of the computational model, it can be
done either way and perhaps an investigation of this will lead to some conclusions. [t could be that the
loop leads to oscillations in some circumstances. If it does, the relationship of the oscillations may be
studied in light of recent observations?®.

In the computational mo‘el, the projections from the spatial map are input t0 2a MABF process. The
overall action of the recogmition MABF is tu segment and identify patterns of temporal activity across the
auditory bands which are established in the cnochlea. Each spatial stimulus segment 15 again segmented
temporally according 1o memory by creating a time dependent sensitivity. The MABF attempts 1o create o
sumulus partial which matches the temporal characteristics of each band. the total effect being to match
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the spectral content as a function of tinre. including relative phase varintion . 0 an o D nnn e
the spatially oriented spectral-band inputs as a bass Recopmtan depends upn o : :
responses across the bands, e, the temporal qualities ot all the individual trequens s tand o bege
assessed simultaneously. Frequency modulation in the stimulus will appear as recopaizable tempor
variation in the bands. In (he training mode, memories are estabhished as a4 ef of wephton

The main function of the recognizer is to attend memory according to the sumulus. Oniy the teaiporaiis
varying activities of the attended spatial segments elictt memories, because they are stronger Il
however, the system may not be attentionally focussed and the performiance of the NABE on compoate
waveforms becomes tmportant. In some cases, individual sounds may not be discerned without interventy o
of a thought process.

When a memory is elicited, a partial of the stimulus is produced through the action of the tempaoial
beamformer, i.e., when a beamformer wins then the temporal vector associated with that memory 15
considered a partial of the stimulus (a significant one). This partial is fed back to the spatial mapping
process, resulting in attention to or a focussing upon the spatial sector from where the partial came.

4. CONCLUSIONS

Adaptive "beamforming” can play multiple roles in comprehensive sensory processing systems and serves
as a paradigm that applies as well to patterns as are observed in neuronal responses in the cochlear nucieus
and superior colliculus as it does to simple spatial and temporal filtering patterns. Some neural
arrangements for adaptive beamforming outlined here have been demonstrated to function as expected on
sea-test data and in the laboratory. Building blocks for groups of mutually inhibitory beamformers were
also outlined, and the operation of a pair of them was demonstrated. They were shown to respond
correctly under the conditions of simultanecus incidence of multiple identical (or very similar) stimuli,
wherein a single NABF would be confused.
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Fig. 1. An adaptive beamforming architecture that uses the Hopfield
arrangement for solving the optimization problem. The optional "third tap,"
which is an inhibitory connection relative to the first tap, is represented in
dashed lines.
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Fig. 2. The deployment pattern for the 11 buoys relevant to the
test data from the Sonar Thinned Random Array Program (STRAP).
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Fig. 5. The automatically adapted beam sensitivity; the beamforming
result with no pre-filtering.
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Fig. 6. Tllustration of constructs relevant to a bi-vector instantiation
of the multi-vector beamforming paradigm.
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Fig. 7. Illustration of the quasi-recursive (QR) computational
module for hierarchical processing.
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Fig. 8. Hebbian module for hierarchical interaction.
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First (a) and second (b) level hierarchical beamformers.
They are confused when two identical stimuli are incident
from 35 and -30 degrees and with simultaneous onset.
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Fig. 10. First (a) aund second (b) level hicrarchical beamformers.
Fach claims a different stimuli when the onsets are
different by approximately 10 milliseconds.

2161 SPIE Vol 1706 Adaptive and Learming Systems (1992)




il i i 111

time
(ms)

time
(ns)

time
(ms)

angle(dg)

Fig. 11. First (a) and seccond (b) level hierarchical beanmtormers.
Same as Fig. 10 except beamformers are QR.  The angle
scale is switched from Fig. 10.
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Fig. 12. Conceptual overvie of the sensory processing
architecture.
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Fig. 13. An architecture for cognitive sensory
processing with auditory system analogues.
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